
Computational Science Across the Curriculum 1
Revised 11/6/2006

A Guidebook
for the Creation of

Computational Science
Modules

W. M. KECK FOUNDATION
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation, Battelle, or the W. M. Keck Foundation.

This guidebook was modeled after and borrows substantially from the ChemConnections developer resource pages http://mc2.cchem.berkeley.edu/modules/index.html.

Thanks, also, to Dr. Brownstein who provided important references and comments, a couple of which are used verbatim.

Computational Science Across the Curriculum 2
Revised 11/6/2006

Table of Contents

Quick Start: Checklist for Submitting a Module. 3
Introduction. 4
Goals and Objectives. 4
Pedagogical Approaches. 4
What is a module? An Overview. 6
Everything You Ever Wanted to Know about the Guts of a Module. 7

Mathematics and Science Level 7
Module Description 7
Keywords 8
Introduction 8
Problem Statement 8
Background Information 8
Model 9
Solution Methodology/ Implementation 9
Assessment 9
Empirical data 9
Conceptual Questions 9
Problems and Projects 10
Solutions 10
Suggestions to Instructors 10
Glossary 10
References 10

Rubric to Assess Student Work in Computational Science. 11
Tips, Tricks, and Traps. 12
Assessment, Assessment, Assessment. 12
Dissemination. 13
Appendix A. Assessment. 14
Appendix B. Resources on Computational Science. 21
References. 25

Computational Science Across the Curriculum 3
Revised 11/6/2006

Quick Start: Checklist for Submitting a Module.

To ensure that the module includes all necessary information, please use this checklist before
submitting a complete module.

_____ Title

_____ Author name(s) and email address(es) and affiliation(s)

_____ Year

_____ Funding source

_____ Math level and science level of the module are identified

_____ Module description (an abstract of the module)

_____ Keywords

_____ Introduction

_____ Problem Statement

_____ Background Information

_____ Model

_____ Solution Methodology/ Implementation

_____ Assessment

_____ Empirical data (if applicable)

_____ Conceptual Questions with Answer Key

_____ Problems and Projects

_____ Solutions (if applicable)

_____ Suggestions to Instructors (if applicable)

_____ Glossary

_____ References

Computational Science Across the Curriculum 4
Revised 11/6/2006

Introduction.

Computational science is a field at the intersection of mathematics, computer science, and
science (hereafter, broadly defined to include biology, chemistry, engineering, environmental
science, finance, geology, medical science, neuroscience, physics, and psychology).
Computational science offers an interdisciplinary approach to scientific research and provides an
important tool, alongside theory and experimentation, in the development of scientific
knowledge.

Goals and Objectives.

The problem at the undergraduate level is a lack of educational materials for computational
science. Much of the development of these computational science methods have been confined to
specific disciplines within the sciences. The commonalities in modeling and visualization
approaches between many disciplines provides a unique opportunity teach undergraduate
students about this interdisciplinary field of study. The objective of this project is to develop
course materials (in a modular format) that culminate in a comprehensive, interdisciplinary
curriculum for computational science at the undergraduate level.

The project targets national needs to enhance students’ knowledge base in computational
science, and to improve student attitudes and appreciation of mathematics and science as
creative, collaborative, and interdisciplinary fields of inquiry. The goals and objectives for this
project are:

Primary Goal:
• To develop materials that constitute an interdisciplinary computational science curriculum
Secondary Goals:
• To emphasize an interdisciplinary, team-based approach to science problem solving
• To cultivate undergraduates’ understanding of the creative nature of computational science
• To improve written and oral communication related to scientific and technical projects
• To facilitate student use of current and emerging computing technologies
• To increase the number of students who pursue graduate degrees in science and mathematics

Pedagogical Approaches.

This integrated curriculum is important because it emphasizes critical thinking skills, problem-
solving techniques, and a team approach to undergraduate student research. Modules use
inquiry-based pedagogy focused on a problem-oriented approach. Through the inquiry-based
pedagogy, instructors use problems as the context for developing theoretical concepts.
Instructors facilitate student learning by: a) presenting students with a problem to solve; b)
having students formulate possible solutions; c) stimulating students’ thinking by asking
questions; d) having students discuss their solutions; and e) having students assess their work by
comparing and defending their solutions. This pedagogical strategy is endorsed in the Boyer
Commission Report (Boyer, 1998).

In addition to the inquiry-based pedagogy, modules are structured around collaborative learning

Computational Science Across the Curriculum 5
Revised 11/6/2006

(i.e., peer instruction). Mazur (1997) developed, tested, and demonstrated the efficacy of peer
instruction for an introductory physics course; this methodology serves as a model for the
proposed modules. The strength of this approach is that students are not passive repositories for
information; they must manipulate and verbalize their understanding as they defend their
position to their peers. For each course, a set of conceptual questions serves as a resource to aid
instructors in assessing students’ conceptual understanding and to facilitate peer learning.

The computational science modules should challenge higher thinking skills in students and
demonstrate the integration of the disciplines. This type of learning may be frustrating for the
students. This frustration can be addressed through thoughtful consideration of required previous
knowledge and by creating an environment where students are encouraged to take risks and
attempt creative solutions. Thus, as you consider the students’ experience of the module, keep in
mind the following pedagogical techniques and decide which subset of these techniques best
achieves the learning objectives for your module. A brief list of sources related to these
techniques is available in the reference list.

 Guided inquiry (or structured inquiry) can be used in the classroom or laboratory. In the
classroom, students may be supplied with data or observe a demonstration. Through
discussion in class and/or through investigating outside resources, the students learn about
the modeling and computational techniques. It can be particularly intriguing to supply
students with an anomalous or counter-intuitive example. In some modules, students begin
by observing something interesting or generating some data. They must then discover the
scientific principles behind their observations – it is this process of discovery that
necessitates the use of computational tools.

 Open-ended inquiry emphasizes the process of doing science. The instructor does not have
a specific outcome in mind, but rather sets up a situation where students can be creative
while learning science. An open-ended question would encourage students to use both their
prior knowledge and outside resources to investigate an area of interest. In the computer
laboratory, students may begin by proposing a question they would like to investigate,
designing experiments, collecting the necessary data, analyzing the data, and defending
their results. Students are evaluated on how well they have completed the steps of the
process, not on whether they got a specific result in the experiment.

 Cooperative learning (or collaborative learning) involves carefully structured group
activities. The activity is structured so that group members are interdependent (they must
all participate to succeed) and individually accountable (all members are responsible for
learning). Part of the structure includes an evaluation that allows the students to reflect on
what worked well in the group, what didn't, and how the group process could be improved.
Careful structure is the key to the success of a cooperative activity.

 The interactive classroom encourages active participation of students, interaction between
students, and interaction between faculty and students. Some examples are:

 In-class problem solving in small groups.
 Turn-to-your-neighbor activities (explain what you observed in the demo, summarize

the key points that have been covered, etc.).
 Getting students up front (to solve a problem on the board, to participate in a demo).
 Two-minute paper (can be used at the end of class to assess what questions the students

still have, good for providing instructor with feedback).

Computational Science Across the Curriculum 6
Revised 11/6/2006

 Writing to learn. Many of these activities come from the writing-across-the-curriculum
movement. Some examples are:

 Write what you know about... (used to get students thinking about a topic, to assess
student's prior knowledge, and to document the student learning process).

 Journal-keeping.
 Two-minute paper (used to get quick feedback from students about their concerns or

questions).
 Lecture can be used when students have questions they need an "expert" to answer. That

expert does not have to be the instructor, but could be one of the students in the class or an
outside consultant. Lectures can also be used to motivate and develop enthusiasm.

 Concept-mapping is useful for helping students make explicit connections between the
things they're learning. According to Ruiz-Primo and Shavelson (1996): “A concept map is
a graph consisting of nodes representing concepts and labeled lines denoting the relation
between a pair of nodes. A student's concept map is interpreted as representing important
aspects of the organization of concepts in his or her memory (cognitive structure).”
Students link together concepts with "logical connectors" that explain the relationships
between the concepts. This may be particularly useful in helping students make
connections between their own experiences and the computational science they are learning
in the classroom. There is some empirical evidence that concept-mapping “effectively
promotes meaningful learning and metacognition” (Materna, 2001 see also, Ruiz-Primo,
Shavelson, Li, & Schultz, 2001).

 In-class debates allow students to practice using scientific arguments to support and defend
a stance they may take.

What is a module? An Overview.

For most courses, modules are grounded in a story that asks an important question and entices
students into wanting to know the answer. The questions should be answerable through
computational science techniques.

We conceptualize a module in the following way:

Problem Model Method Implementation

Assessment

Computational Science Across the Curriculum 7
Revised 11/6/2006

The module includes the following sections. When you author the materials, each of these
sections should be under its own heading and each section is described in more detail below.

 Overview or description of the module
Problem Introduction to the problem or question

 Statement of the problem or question
 Background information Assessment
 Model details

Model
Method

Implementation

 Solution methodology/ implementation
 Assessment of the model(s)
 Empirical data, if available
 Conceptual questions
 Problems and Projects
 Solutions

Ancillary Materials Suggestions to Instructors
 Glossary of terms
 References

Class sessions explore various aspects of the overall question by breaking it down into essential
sub-questions. Students work with relevant information through a variety of activities (e.g., in
class, in the laboratory, with media, and as homework) to develop an answer to the immediate
question. The module should culminate in a product such as a paper, poster presentation, debate,
or experiment that provides an opportunity for students to communicate their solution to their
peers.

Modules should be flexible so that they can be imported into a wide variety of courses and can
accommodate a variety of teaching and learning environments. While some of the models build
upon material learned in earlier modules, there should be some modules that are independent.

Everything You Ever Wanted to Know about the Guts of a Module.

Math and Science Level

To facilitate adoption of the materials, it is helpful to indicate the math and science level for each
module. Indicate them separately and use the following categories for an undergraduate course of
study: Introductory, Intermediate, and Advanced.

Overview or description of the module including the prerequisite knowledge

Consider this an executive summary of the module. Clearly state the goals and objectives of this
module for students – write the module goals and objectives in a way that facilitates evaluation
of their attainment. Be specific without creating a laundry list of concepts. Identify what the
students should expect to learn and, where appropriate, how this module is connected to other
computational science modules. This connection should be made explicit so that both students
and instructors can begin to generalize to new situations the tools and techniques they learn.

Computational Science Across the Curriculum 8
Revised 11/6/2006

This section should also indicate the assumed prerequisite knowledge needed by the students to
complete the module.

As you write this section, consider the following questions:

 Is the course in which I am going to use the module for a general science audience or for
specific science majors?

 How many computational science, science, and mathematics courses should students have
had prior to this course? Provide a short list of the basic concepts students need before
taking the course. This should not be a list of concepts covered in your module.

 Do I envision using the module as a stand-alone component within the course, as an
integrated component of the course, or as an add-on to the course?

 Do I intend to use the module in the classroom, in the laboratory, or in both?
 Where in the course do I intend to use the module? (e.g., beginning, end, an intermediate

point, or throughout as part of an integrating theme or framework for the course)
 What resource/background material will students need to make sense of the material in the

module?
 What knowledge should students have by the end of the module?

Keywords

Include up to five keywords that described the educational module. These may be basic concepts
used in the module along with software modeling tools used to implement the module. These
keywords are used to index the modules for internet search engines.

Introduction to the problem or question

Ass
es

sm
en

t

Figure 1: Problem-Solving Paradigm
for Course Modules

This is the story. The module question, and its
accompanying story line, provides a contextual framework
and springboard for guided inquiry and exploration. The
module story line is held together by a series of sub-
questions. This template provides a simple structure for
inquiry that conveys the module story line, its
organization, and the direction of the associated inquiry.
Variation is expected in how the inquiry is done between
and within modules.

Statement of the problem or question

The problem or question flows from the story. The problem or question provides a context for
understanding and applying specific computational science concepts.

Background information – scientific, mathematical, and computer, where appropriate

This section should provide adequate background for students to follow construction of the
model. Some examples:

Computational Science Across the Curriculum 9
Revised 11/6/2006

 When exploring a groundwater model, students must learn about the local geology, become

familiar with appropriate terminology, and review the mathematical methods to be used.
This module would reference appropriate modules that use similar mathematical models.

 For the module on the spread of disease, students acquire background in epidemiology and
the appropriate terminology.

 For the module on brain mapping in a Computational Neuroscience and Psychology,
students review brain structure and function, needed mathematical concepts (i.e., matrix
algebra), and techniques from modules in Scientific Visualization.

Explanation of the model(s) used to solve the problem or answer the question

A step-by-step creation and rationale of the mathematical and computational model(s). Include
definitions of the variables, interrelationships among variables, and how those relationships are
expressed mathematically.

Solution methodology/ implementation

A mathematical analysis, or the solution process, and the selection/ rationale for the appropriate
computational technique(s). Use of appropriate software packages for the implementation and
visualization of the solution. Authoring of code, where appropriate.

Assessment of how well the model solves the problem or answers the question

Students should understand that a model is only as good as the assumptions that underlie it and
the data used to construct the model. To determine the value of the model, students should
compare the predicted values of the model with actual data (if available) or with theoretical
predictions. Consider employing a variety of techniques for assessing the model. Projects can
flow out of the students’ assessment as they determine when the predicted values don’t match
with actual data. Students should consider how the simplifying assumptions affected the model
predictions and how the assumptions should be refined to acquire a better fit between predicted
and actual values.

Empirical data

Whenever possible, provide sample data, plots and figures, or outline a method for having
students collect such data. These data are used to assess the validity of the model(s) that they
produce.

Conceptual questions to examine student’s understanding of the material

This section includes a selection of questions appropriate for end-of-module and/or end-of-
course assessment. Include some in a format that can be easily graded. For example, common
student responses to an open-ended question can be converted into the choices for a multiple-
choice question, perhaps with a follow-up question asking students to justify the answer they
selected. Where possible, include questions with links to other modules.

Computational Science Across the Curriculum 10
Revised 11/6/2006

Problems and projects

Provide a number of practice problems/questions using computational science skills and thinking
skills developed in the module. These are likely to be used for homework.

The module ends with a culminating activity, often project-based, for assessment of student
learning of computational science concepts and/or scientific thinking skills. Full written reports
should be expected for more involved homework and projects. In these reports, students should
explain all of the steps of the solution methodology and assessment – this provides an
opportunity to sharpen their technical writing skills.

As you develop problems and projects for the module, keep in mind four of the goals of the
project:

 To emphasize an interdisciplinary, team-based approach to science problem solving
 To cultivate undergraduates’ understanding of the creative nature of computational science
 To improve written and oral communication related to scientific and technical projects
 To facilitate student use of current and emerging computing technologies

Solutions

These are supplied to the instructors who choose to adopt the materials. Keep in mind that some
of the conceptual questions, problems, and projects may have more than one answer. These
solutions should clearly indicate the steps toward the assigned problem solutions. Include
software or model output along with the answer documentation.

Suggestions to instructors for using the module

Include a brief paragraph that emphasizes the importance of planning ahead and of choosing a
pathway through the module that is appropriate for students. Demonstrating via a course calendar
how to schedule class time and out-of-class assignments facilitates adoption by other institutions.
Include a brief description of the course format and how the module fits into the course as a
whole. Note that instructors need to generate a syllabus or schedule for their own students; here
you provide a few models to convey the need for such a student guide and the range of time
periods and approaches possible for a single module. You may provide an annotated list of
exceptionally useful materials related to the module: books, articles, web sites, special
collections of data, etc. One to two pages – be realistic and choose the few items most useful to
instructors.

Glossary of terms

Provide a list of new or important terms with appropriate definitions for students.

References – both cited and for additional reading

Computational Science Across the Curriculum 11
Revised 11/6/2006

Include a list of original references to journal articles, books, reports, and websites required as
background reading for the module. Suggest background textbook reading about science,
mathematics, or computer concepts covered in the module.

Rubric to Assess Student Work in Computational Science.

 Unacceptable

0
Below Average

1
Average

2
Superior

3
Score

Writing
Mechanics

Many spelling
and grammar

errors

Several spelling
and grammar

errors

Few spelling and
grammar errors

No spelling and
grammar errors

Writing Quality Incompetent, not
college level

Marginal,
college level,

but below course
level

Competent,
appropriate for

course level

Sophisticated,
graduate-level

Completeness Missing much
information

Missing some
information

All basic
information is

included

Goes beyond
assignment’s

minimum
requirements

Mathematics
Correctness Many errors Few errors No errors

No errors and
shows depth of
understanding

Science
Correctness Many errors Few errors No errors

No errors and
shows depth of
understanding

Computing
Correctness Many errors Few errors No errors

No errors and
shows depth of
understanding

Logic and Flow
No logic to the

flow of
information

Awkward flow
of ideas

Logical flow of
ideas

Attempts to tell
a story

Use of Sources
(if appropriate)

Has less than
75% of sources

Has at least 75%
of sources or not

all are cited

Has minimum
number of

sources

Has more than
minimum
number of

sources

Interdisciplinary
(Math, Science,

Computing)

Missing two
components

Missing one
component

Attempts to
incorporate all
components

Effectively
communicates
all components

Team-effort
One student

completed entire
assignment

At least one
student did not
contribute to
assignment

Each student
contributed,
though not

equally

Each student
contributed

equal effort to
assignment

Computing
Technology

Technology not
used

Technology
level below
assignment

requirements

Technology
level appropriate
for assignment

Technology
level higher than

assignment
requirements

Creativity

Does not
demonstrate

even “textbook”
or lecture

thinking about
project

Does not go
beyond

“textbook” or
lecture thinking

about project

Demonstrates
novel thinking
about project

Effectively and
convincingly
demonstrates

novel thinking
about project

Computational Science Across the Curriculum 12
Revised 11/6/2006

Tips, Tricks, and Traps.

 Developing a module is a dynamic process that may lead to minor or major changes in the
initial design. As the team members, outside evaluators, and students review the materials
you create, they may suggest refining small or large components of your work. Because the
goal is to create the best materials that we can, you should consider the suggestions that
others provide a blessing, and not an attack on your work… in other words, go with the
flow.

 When including computer code, be sure to fully document the code so that students and
less experienced instructors will understand the purpose of the commands.

 Avoid using highly specialized software, particularly expensive packages – dissemination
of the materials is greater with software that is either widely available or relative
inexpensive.

 Avoid extensive formatting of the documents that you author.
• Using a common word processing package (i.e., Word) makes it easier for student

workers to convert the files to PDF (and any other formats we select) and makes it less
likely that information is lost in the conversion process.

• Use Times New Roman for the font throughout the module.
• Main titles should be in 18-point font and centered with one additional line both above

and below.
• Subtitles should be in 16-point font and left justified with one additional line both

above and below.
• Text should be in 12-point font, single spaced and left justified paragraphs with a blank

line separating each paragraph. Do not indent the first line of the paragraph.
• Equations should be centered and numbered, if appropriate – use Math Type
• Include diagrams, graphs, and images in digital form and embedded within the text

document
 See Appendix B for software used in the Capital University Computational Science

program and for additional information concerning web resources on computational
science.

Assessment, Assessment, Assessment. (Oh, did I mention assessment?)

Although many faculty cringe at the thought of having to do assessment, for the purposes of this
project, you should consider assessment to be an integral component for ensuring high quality
materials.

For all modules, two types of evaluation (formative and summative) occur in three overlapping
phase: Phase one: Developed materials are reviewed by co-PIs within the same discipline or who
are creating materials for the same course. Phase two: an Evaluation Team of national experts
review developed materials. Phase three: Developed and reviewed materials are class tested. The
purpose of the formative evaluation is to assess the development of the modules (phases one and
two). The purpose of the summative evaluation is to determine the effectiveness of the developed
modules (phase three). The goal for the assessment is to engage in a reflective conversation with
each other, with the outside evaluators and with our students.

Computational Science Across the Curriculum 13
Revised 11/6/2006

The assessment materials provided in Appendix A were originally developed by professional
evaluators to assess the Computational Science materials developed for Capital University’s NSF
CCLI grant (DUE 9952806); these assessment materials have been modified to accommodate the
needs of this project.

Dissemination.

All developed materials clearly identify the contributions of the appropriate funding agency.
Course materials are platform independent and available in multiple versions (computer
languages, computer algebra systems), thus encouraging a wide national impact. The modular
approach increases their ease for adoption as either a whole course or a subset of modules
depending on the hardware and software availability at the adopting institution.

The first component of dissemination begins within the granting period. All authored materials
are Web-based. A dedicated web site is used for the materials and includes a statement of the
funding agencies’ contributions to the project. The second component of dissemination involves
presenting our model materials at workshops that are funded by the project. The third component
of dissemination is the hosting of two national conferences focused on undergraduate
computational science. The first conference is scheduled for 2008 at Capital University. The
second conference is schedule for 2010 at California Polytechnic University.

Modules authors are also encouraged to present the material at national academic conferences
and disciplinary societies. At each of these presentations, the funding agency is acknowledged as
a major contributor to the project.

Computational Science Across the Curriculum 14
Revised 11/6/2006

Appendix A. Assessment

Student Questionnaire: Pretest

 Please use the 7-point scale to indicate your agreement
or disagreement with each statement.

BELIEFS
str

on
gly

 di
sag

ree

dis
ag

ree

ne
utr

al

ag
ree str

on
gly

 ag
ree

not
applicable

don't
know

1 Generally, I feel secure about attempting computational
science.

1 2 3 4 5 N/A DK

2 I study computational science because I know how useful
it is.

1 2 3 4 5 N/A DK

3 Knowing computational science will help me earn a
living.

1 2 3 4 5 N/A DK

4 I am sure I can do advanced work in computational
science.

1 2 3 4 5 N/A DK

5 I have a good understanding of what computational
scientists do.

1 2 3 4 5 N/A DK

6 It is clear to me how computational science is connected
to other disciplines like math, sciences and computer
science.

1 2 3 4 5 N/A DK

7 Computational science is relevant to real world issues. 1 2 3 4 5 N/A DK

8 I understand the methods of computational science. 1 2 3 4 5 N/A DK

9 I enjoy working in groups. 1 2 3 4 5 N/A DK

10 When I am working in a group, I am comfortable in a
leadership role.

1 2 3 4 5 N/A DK

11 When I am working in a group, I usually participate
actively.

1 2 3 4 5 N/A DK

12 When I am working in a group, I feel that I have
important things to say.

1 2 3 4 5 N/A DK

13 I feel that my contribution to group work is valued by the
other members of the group.

1 2 3 4 5 N/A DK

Computational Science Across the Curriculum 15
Revised 11/6/2006

PART 2: Background Information

14 How many college computational science courses had you taken before this one?
1. 1 course
2. 2 courses
3. 3 courses
4. 4 or more courses
5. 0 courses

15 How many more computational science courses do you plan to take?
1. 1 4. 4
2. 2 5. 5 7. 0
3. 3 6. 6 or more

16 How many more courses do you plan to take in math and science?
1. 1 4. 4
2. 2 5. 5 7. 0
3. 3 6. 6 or more

17 What are the last 5 digits of your student ID number? __________________________

Computational Science Across the Curriculum 16
Revised 11/6/2006

Student Questionnaire: Posttest

 Please use the 7-point scale to indicate your agreement
or disagreement with each statement.

BELIEFS str
on

gly
 di

sag
ree

dis
ag

ree

ne
utr

al

ag
ree str

on
gly

 ag
ree

not
applicable

don't
know

1 Generally, I feel secure about attempting computational
science.

1 2 3 4 5 N/A DK

2 I study computational science because I know how useful
it is.

1 2 3 4 5 N/A DK

3 Knowing computational science will help me earn a
living.

1 2 3 4 5 N/A DK

4 I am sure I can do advanced work in computational
science.

1 2 3 4 5 N/A DK

5 I have a good understanding of what computational
scientists do.

1 2 3 4 5 N/A DK

6 It is clear to me how computational science is connected
to other disciplines like math, sciences and computer
science.

1 2 3 4 5 N/A DK

7 Computational science is relevant to real world issues. 1 2 3 4 5 N/A DK

8 I understand the methods of computational science. 1 2 3 4 5 N/A DK

9 I enjoy working in groups. 1 2 3 4 5 N/A DK

10 When I am working in a group, I am comfortable in a
leadership role.

1 2 3 4 5 N/A DK

11 When I am working in a group, I usually participate
actively.

1 2 3 4 5 N/A DK

12 When I am working in a group, I feel that I have
important things to say.

1 2 3 4 5 N/A DK

13 I feel that my contribution to group work is valued by the
other members of the group.

1 2 3 4 5 N/A DK

Computational Science Across the Curriculum 17
Revised 11/6/2006

SKILLS AND ABILITIES

14 This course helped me gain abilities in giving oral
presentations.

1 2 3 4 5 N/A DK

15 This course helped me gain an understanding of the main
concepts of computational science (i.e., math, science,
and computing).

1 2 3 4 5 N/A DK

16 This course focused on answering real world questions 1 2 3 4 5 N/A DK

17 This course was organized so that we were encouraged to
discuss ideas.

1 2 3 4 5 N/A DK

18 The structure of this course enabled me to discover some
of the ideas of computational science for myself.

1 2 3 4 5 N/A DK

19 This course provided opportunities for me to construct
models.

1 2 3 4 5 N/A DK

20 Student presentations in this course helped my learning. 1 2 3 4 5 N/A DK

21 Instructor presentations in this course helped my learning. 1 2 3 4 5 N/A DK

22 Discussions in this class helped my learning. 1 2 3 4 5 N/A DK

23 Hands-on activities in this class helped my learning. 1 2 3 4 5 N/A DK

24 Written assignments in this class helped my learning 1 2 3 4 5 N/A DK

25 Reading materials that the instructor created helped my
learning

1 2 3 4 5 N/A DK

26 Other reading materials helped my learning 1 2 3 4 5 N/A DK

27 The feedback we got helped my learning 1 2 3 4 5 N/A DK

28 I understood why we did each module 1 2 3 4 5 N/A DK

29 I understood most of the ideas presented in this course. 1 2 3 4 5 N/A DK

str
on

gly
 di

sag
ree

dis
ag

ree

ne
utr

al

ag
ree str

on
gly

 ag
ree

not
applicable

don't
know

Computational Science Across the Curriculum 18
Revised 11/6/2006

30 By the end of this course, I felt able to apply the concepts
presented.

1 2 3 4 5 N/A DK

31 This course helped me get better at seeing alternative
approaches to a problem.

1 2 3 4 5 N/A DK

32 This course helped me feel more comfortable with the
idea that some questions have no single right answer.

1 2 3 4 5 N/A DK

3 3 I enjoyed taking this computational science course 1 2 3 4 5 N/A DK

PART 2: Background Information

34 What is your age? __________

35 Which of the following represents your year in college?
1. First year 2. Sophomore 3. Junior
4. Senior 5. Senior +1 6. Graduate Student
7. Post-professional degree

36 What is your gender? 1. Female 2. Male

37 What is your intended major? (please choose only one)
1. Biology 2. Chemistry 3. Computer science
4. Education 5. Environmental science 6. Finance
7. Geology 8. Mathematics 9. Psychology
10. Physics 11. Other

38 What is the field of your intended career? (please choose only one)

1. Science / Engineering 2. Medical / Dental / Other Health Care
3. Teaching K-12 4. Business / Policy
5. Social sciences 6. Humanities / Arts
7. Undecided/Other

39 How many college computational science courses had you taken before this one? _____

40 How many more computational science courses do you plan to take? _____

41 How many more courses do you plan to take in math and science? _____

42 What are the last 5 digits of your student ID number? __________________________

Computational Science Across the Curriculum 19
Revised 11/6/2006

Evaluation of Materials

Date __

Module Title ___

 Please use the 7-point scale to indicate your agreement
or disagreement with each statement.

CONTENT
str

on
gly

 di
sag

ree

dis
ag

ree

ne
utr

al

ag
ree str

on
gly

 ag
ree

not
applicable

don't
know

1

All sections are clearly identified. 1 2 3 4 5 N/A DK

2

Objectives of the module are clearly stated. 1 2 3 4 5 N/A DK

3 The software employed is NOT outdated. 1 2 3 4 5 N/A DK

4 All resources that are cited give credit to the author. 1 2 3 4 5 N/A DK

5 The materials provide the reader with avenues for further
research.

1 2 3 4 5 N/A DK

6

The information within the module is consistent with the
stated objectives of the module.

1 2 3 4 5 N/A DK

7

The information is organized such that it will be easily
understood by students.

1 2 3 4 5 N/A DK

8

The content of linked sites is worthwhile and appropriate. 1 2 3 4 5 N/A DK

9

The course content is free of bias (i.e., sexual, racial, or
ethnic, etc).

1 2 3 4 5 N/A DK

10 A contact person or address is identified for the module. 1 2 3 4 5 N/A DK

CONTENT VALIDITY

11

The scientific information for the course is accurate. 1 2 3 4 5 N/A DK

12

The mathematical information for the course is accurate. 1 2 3 4 5 N/A DK

13

Charts and/ or graphs are clearly labeled and easy to read. 1 2 3 4 5 N/A DK

14 Charts and/ or graphics aid in reaching the stated
objectives for the course.

1 2 3 4 5 N/A DK

Computational Science Across the Curriculum 20
Revised 11/6/2006

15

The source of data is referenced. 1 2 3 4 5 N/A DK

16

The information is free of grammatical, spelling, and
other typographical errors.

1 2 3 4 5 N/A DK

AUDIENCE ENGAGEMENT

17 The module content promotes inquiry learning. 1 2 3 4 5 N/A DK

18 Students are encouraged to think and reflect. 1 2 3 4 5 N/A DK

19 Critical thinking skills are needed to analyze and
synthesize information.

1 2 3 4 5 N/A DK

20

Students are encouraged to continue exploration and
research with additional hypertext links on the web site.

1 2 3 4 5 N/A DK

21

When appropriate to the module, data sharing with other
students is encouraged.

1 2 3 4 5 N/A DK

22 Please provide other comments, questions, or suggestions:

Computational Science Across the Curriculum 21
Revised 11/6/2006

 Appendix B: Resources for Computational Science.

Partial List of Software used in Capital University's
Computational Science Program

Software Description
General Proprietary Software
Maple ®
Http://www.maplesoft.com/

Maple is a powerful symbolic mathematical solver

Mathematica ®
http://www.wolfram.com/

Mathematica is the integrated technical computing system for both
numeric and symbolic calculations, visualization tools, and a complete
programming environment.

MatLab ®
http://www.mathworks.com/

MATLAB integrates mathematical computing, visualization, and a
language to provide technical computing.

Spreadsheets – Excel ®

Ubiquitous in many PC environments and allows for solution of
statistical and computational problems.

STELLA ®
http://www.hps-inc.com/

An icon-based model building and simulation tool using system
modeling approach.

Public Domain Software
VTK ®
http://public.kitware.com/
vtkhtml/index.html

The Visualization ToolKit (VTK) is an open source, freely available
software system for 3D computer graphics, image processing, and
visualization.

Python ®
http://www.python.org/

Python is a programming language. It has efficient high-level data
structures and a simple but effective approach to object-oriented
programming.

US Geological Survey
http://water.usgs.gov/software/

Water Resource Application Software -- Public domain software for
Environmental Science and Geology.

Specialized Proprietary Software
AVS/Express ®
http://www.avs.com/

This object-oriented development system for UNIX/Linux and Windows
lets you create scientific and technical visualization apps.

GIS Arc-View ®
http://www.esri.com/

Geographic Information System software

Minitab ®
http://www.minitab.com/

Statistical analysis package

NAG ®
http://www.nag.com/

Numerical Algorithm Group Library

Surfer ®
http://www.goldensoftware.
com/

Three-dimensional mapping software

Undergraduate Programs in Computational Science

Institution Degree Offered

Australian National University Bachelor of Computational Science
Capital University
http://capital2.capital.edu/orgs/CSAC/

Minor in Computational Science

Carleton University Bachelor of Computational Chemistry
Clark University Concentration in Computational Science
Florida State University BS in Computational Science and Information Technology
Illinois State University BS in Computational Physics
Michigan State University BS in Computational Mathematics
National University of Singapore BS in Computational Science
University of Nevada, Las Vegas BS in Computational Physics
Oregon State University Bachelor of Computational Physics

Computational Science Across the Curriculum 22
Revised 11/6/2006

Princeton University Undergraduate Certificate in Applied and Computational Mathematics
Rice University BA in Computational and Applied Mathematics
Salve Regina University Minor in Computational Science
San Diego State Univeristy Mathematics with emphasis in Computational Science
State University of New York Brockport BS in Computational Science
SUNY Brockport BS in Computational Science
Syracuse University Minor in Computational Science
University of Buffalo (SUNY) BS in Computational Physics
University of Chicago BA and BS in computational and Applied Mathematics
University of Wisconsin – Eu Claire Minor in Computational Science
University of Wisconsin – La Crosse Minor in Computational Science
Wofford College Emphasis in Computational Science

Undergraduate Courses in Computational Science

Institution Course(s) Offered
Boston University
(home of the Boston Univ. Center for
Computational Science, founded in 1990)

Parallel Algorithms and Programs; Introduction to Parallel
Computing; Parallel Computation for Engineering; Advanced
Scientific Computing in Physics; Computational Physics

California Institute of Technology Introduction to Scientific Computing; Concurrent Scientific
Computing; Introduction to Concurrent Programming;
Freshman/Sophomore Computational Physics Laboratory;
Algorithms and Applications of Physical Computation and
Complex Systems; Advanced Computational Physics Laboratory

Duke University Computational Methods in Biomedical Engineering
Elizabeth City State University
Indiana University of Pennsylvania Numerical Methods for Supercomputers
Indiana University – Purdue University at
Indianapolis

Scientific Computing I; Scientific Computing II; High
Performance Computing

Michigan State University Vector and Parallel Programming
New Mexico Institute of Mining & Technology Introduction to Parallel Processing; Introduction to High

Performance Computing
North Carolina State University
Oregon State University Introductory Scientific Computing; Computational Physics
San Diego State University Advanced Physical Chemistry; Chemistry on Supercomputers;

Introduction to Computational Programming and Visualization;
Supercomputing for the Sciences; Introduction to Computational
Physics; Computational Physics; Computer Simulations in the
Physical Sciences; Scientific Imaging and Visualization in the
Earth Sciences

San Francisco State University Supercomputing and Fractal Graphics
SUNY Institute of Technology at Utica Scientific Computing
United States Naval Academy
University of Colorado High-Performance Scientific Computing 1 & 2
University of Houston-Downtown Parallel Computing
University of Minnesota Introduction to Parallel Computing; Computational Methods in the

Physical Sciences I; Computational Methods in the Physical
Sciences II

University of Rochester Computational Physics I

Computational Science Across the Curriculum 23
Revised 11/6/2006

Graduate Programs in Computational Science
 (* denotes specialty degrees/programs)

Institution Degree Offered

University of Arizona * PhD minor
Baylor College of Medicine PhD in Structural & Computational Biology & Molecular

Biophysics
University of California at Davis * PhD in Applied Science with emphasis in Computational

Science
University of California at San Diego * PhD in Scientific Computation

Graduate program in Computational Neurobiology
Carnegie Mellon University MS in Computational Finance
Chulalongkorn University MS in Computational Science
Clemson University MS in Computational Science and Engineering

* PhD specialty
Florida State University MS in Computational Science and Information Technology
George Mason University PhD in Computational Science and Informatics
George Washington University MS in Computational Science
Georgia Tech MS in Quantitative and Computational Finance
University of Houston * Graduate certificate in Computational Science
University of Illinois * PhD specialty

* Graduate certificate in Computational Science & Engineering
Indiana University at Bloomington * PhD minor in Scientific Computation
Iowa State University PhD in Bioinformatics and Computational Biology
Louisiana State University Dual Physics PhD/Computer Science MS
Memorial University of Newfoundland MS in Computational Science
University of Michigan * Joint PhD in Scientific Computing
Michigan State University MS in Computational Chemistry
Michigan Technological University PhD in Computational Science and Engineering
University of Minnesota MS and PhD in Scientific Computing

PhD in Computational Chemistry
PhD in Computational Neuroscience

Mississippi State University MS in Computational Engineering
PhD in Computational Engineering

North Carolina State University * MS and PhD in Scientific Computing and Computational
Mathematics

Old Dominion University * Graduate certificate in Computational Science & Engineering
University of Pennsylvania PhD in Computational Biology
Princeton University PhD in Applied and Computational Mathematics
Purdue University * MS and PhD specialization in Computational Science and

Engineering specialization in Computational Finance
Rensselaer Polytechnic Institute * Graduate certificate in Computational Science & Engineering
Rice University MS and PhD in Computational Science and Engineering

MA and PhD in Computational and Applied Mathematics
San Diego State University MS and PhD in Computational Science

* Graduate certificate in Computational Science
Stanford University MS and PhD in Scientific Computing and Computational

Mathematics
State University of New York Brockport MS in Computational Science
Swedish School of Economics and Business
Administration

MS in Computational Finance

Syracuse University MS in Computational Science
* MS and PhD Certificate in Computational Science

University of Colorado, Denver * PhD in Applied Mathematics with Computational Math option

Computational Science Across the Curriculum 24
Revised 11/6/2006

University of Houston * Graduate certificate in Computational Sciences
University of Minnesota MS and PhD in Scientific Computation
The University of Texas at Austin MS and PhD in Computational and Applied Mathematics
University of Utah * Graduate certificate in Computational Engineering & Science
Utrecht University MS in Computational Science
University of Wisconsin MS in Computational Science
Worcester Polytechnic Institute * MS and PhD specialization in Computational Engineering in

Electromagnetics and Acoustics

Graduate Courses in Computational Science

Institution Course(s) Offered
Boston University Advanced Computer Architecture
Colorado State University Fundamentals of High Performance Computing; High

Performance Computing and Visualization
Cornell University Introduction to Scientific Computation; Computer Graphics and

Visualization; Software Tools for Computational Science
The Ohio State University Applications of Parallel Computers
University of Oregon Computational Science
Vanderbilt University Supercomputers in Scientific Computing; Computational Physics

Undergraduate Curriculum Web Resources in Computational Science
Partial List

Resources Description of Resources
Biology WorkBench
http://peptide.ncsa.uiuc.edu/

The goal of this project is to promote the use of molecular data in the
identification and exploration of biological problems with an evolutionary
perspective throughout undergraduate biology curricula.

BioQuest
http://bioquest.org/

Curriculum consortium to promote curriculum innovation by serving a
national role as a networking resource for individuals to share, distribute,
and enhance cooperation among on-going and future biology education
development projects. Includes the BioQUEST Library, BQ Notes,
BioQUEST Website.

ChemViz
http://chemviz.ncsa.uiuc.edu/

Online chemistry visualization tools.

CSAC at Capital
http://capital2.capital.edu/orgs/CSAC/

Computational Science Across the Curriculum at Capital University.
Resource for Computational Science modules at the undergraduate level in
Math, Physics, Environmental Science, Behavior Sciences, Chemistry,
Biology, Scientific Visualization

EOT-PACI
http://www.eot.org/

The mission is to develop human resources through the innovative use of
emerging information technologies to understand and solve problems.

Krell Institute
http://www.krellinst.org/

Materials and links to curriculum at graduate level and K-12 in
Computational Science.

NPACI
http://www.npaci.edu/

The mission of the National Partnership for Advanced Computational
Infrastructure (NPACI) is to advance science by creating a ubiquitous,
continuous, and pervasive national computational infrastructure: the Grid.

San Diego SuperComputer Center –
Computational Science Repository
http://www.sdsc.edu/CSR/

Repository of Computational Science curriculum

Shodor Foundation
http://www.shodor.org/

The Shodor Foundation is a non-profit research and education
organization dedicated to the advancement of science and math education,
specifically through the use of modeling and simulation technologies.

Compiled by Capital University, Computational Science Program

 Terry Lahm: tlahm@capital.edu and Andrea M. Karkowski: akarkows@capital.edu

Computational Science Across the Curriculum 25
Revised 11/6/2006

References
Bonwell, C. & Eison, J. (1991). Active learning: Creating excitement in the classroom. ASHE-

ERIC Higher Education Report, 4.
Boyer Commission (1998). Boyer Commission on education undergraduates in the research

university: Reinventing undergraduate education; A blueprint for America’s research
universities [On-line]. Available: http://notes.cc.sunysb.edu/Pres/boyer.nsf

Brooks, G. (1993). In search of understanding: The case of constructivist classrooms.
Association for Supervision and Curriculum Development.

Cerrito, P. (1996). Mathematics across the curriculum. College Teaching, 44, 48-51.
Johnson, R.T. & Johnson, D. W. (2002). The cooperative learning center at the University of

Minnesota. http://www.clcrc.com/
Laymen, J. W. (1996). Inquiry and learning: Realizing science standards in the classroom.

College Entrance Examination Board, New York.
Materna, L. (2001). Impact of concept-mapping upon meaningful learning and metacognition

among foundation-level associate-degree nursing students. Dissertation Abstracts
International, 61(10-A), 3854.

Mazur, E. (1997). Peer Instruction: A User’s Manual. New Jersey: Prentice Hall, Inc.
McDermott, L.C. (1996). Physics by inquiry, Vols. I & II. New York: John Wiley and Sons.
National Committee on Science Education Standards and Assessment, National Research

Council (1996), National Science Education Standards, National Academy Press,
Washington DC. http://books.nap.edu/books/0309053269/html/index.html

National Research Council (2000). Inquiry and the national science education standards: A
guide for teaching and learning. National Academy Press, Washington DC.

Ruiz-Primo, M.A. & Shavelson, R.J. (1996). Problems and issues in the use of concept maps in
science assessment. Journal of Research in Science Teaching, 33(6), 569-600.

Ruiz-Primo, M.A., Shavelson, R.J., Li, M., Schultz, S.E. (2001). On the validity of cognitive
interpretations of scores from alternative concept-mapping techniques. Educational
Assessment, 7(2), 99-141.

Seibert, E.D. and W.J. McIntosh (2001). College pathways to the science education standards.
National Science Teachers Association Press, Arlington, Virginia.

http://notes.cc.sunysb.edu/Pres/boyer.nsf

	A Guidebook
	Table of Contents
	Solution Methodology/ Implementation
	Solutions
	Suggestions to Instructors
	Solution Methodology/ Implementation
	Solutions (if applicable)
	Suggestions to Instructors (if applicable)
	Math and Science Level
	
	Overview or description of the module including the prerequisite knowledge
	Introduction to the problem or question
	Statement of the problem or question
	Background information – scientific, mathematical, and computer, where appropriate
	Explanation of the model(s) used to solve the problem or answer the question
	Solution methodology/ implementation

	Assessment of how well the model solves the problem or answers the question
	Empirical data
	Conceptual questions to examine student’s understanding of the material
	 Problems and projects

	Solutions
	Suggestions to instructors for using the module

	Glossary of terms
	References – both cited and for additional reading

	
	SKILLS AND ABILITIES
	CONTENT
	
	CONTENT VALIDITY
	
	AUDIENCE ENGAGEMENT

	 Appendix B: Resources for Computational Science.
	
	Specialized Proprietary Software

	
	Undergraduate Programs in Computational Science
	Australian National University
	Capital University
	Rice University
	Salve Regina University
	San Diego State Univeristy
	Undergraduate Courses in Computational Science
	 Graduate Programs in Computational Science

	PhD in Computational Engineering
	Graduate Courses in Computational Science
	Undergraduate Curriculum Web Resources in Computational Science

